× Hinweis! Zum ersten Mal hier? Bitte klicken Sie hier: Zum Lizenzangebot


<< Zurück

Topological Optimization and Optimal Transport

Topological Optimization and Optimal Transport cover
E-ISBN 9783110430417
P-ISBN 9783110439267
Verlag De Gruyter
Erscheinungstermin 07.08.2017
Seiten 430
Autor/en Maïtine Bergounioux, Édouard Oudet, Martin Rumpf, Guillaume Carlier, Thierry Champion, Filippo Santambrogio
Seitenpreis pro Teilnehmer Basic: 4.07 Cent / Comfort: 8.14 Cent


Contents PDF 5‑15
(Buch V-3)
Part I PDF 15‑15
(Buch 3-3)
1. Geometric issues in PDE problems related to the infinity Laplace operator PDF 15‑32
(Buch 3-20)
2. Solution of free boundary problems in the presence of geometric uncertainties PDF 32‑52
(Buch 20-40)
3. Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau energies PDF 52‑76
(Buch 40-64)
4. High-order topological expansions for Helmholtz problems in 2D PDF 76‑135
(Buch 64-123)
5. On a new phase field model for the approximation of interfacial energies of multiphase systems PDF 135‑154
(Buch 123-142)
6. Optimization of eigenvalues and eigenmodes by using the adjoint method PDF 154‑171
(Buch 142-159)
7. Discrete varifolds and surface approximation PDF 171‑185
(Buch 159-173)
Part II PDF 185‑185
(Buch 173-173)
Preface PDF 185‑187
(Buch 173-175)
8. Weak Monge–Ampère solutions of the semi-discrete optimal transportation problem PDF 187‑216
(Buch 175-204)
9. Optimal transportation theory with repulsive costs PDF 216‑269
(Buch 204-257)
10. Wardrop equilibria: long-term variant, degenerate anisotropic PDEs and numerical approximations PDF 269‑293
(Buch 257-281)
11. On the Lagrangian branched transport model and the equivalence with its Eulerian formulation PDF 293‑316
(Buch 281-304)
12. On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows PDF 316‑345
(Buch 304-333)
13. Pressureless Euler equations with maximal density constraint: a time-splitting scheme PDF 345‑368
(Buch 333-356)
14. Convergence of a fully discrete variational scheme for a thin-film equation PDF 368‑412
(Buch 356-400)
15. Interpretation of finite volume discretization schemes for the Fokker–Planck equation as gradient flows for the discrete Wasserstein distance PDF 412‑429
(Buch 400-417)
Index PDF 429‑430
(Buch 417-430)